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Poloidal Flow Driven by Ion-Temperature-Gradient Turbulence in Tokamaks
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(Received 27 August 1997)

We show that linear collisionless processes do not damp poloidal flows driven by ion-temperatu
gradient (ITG) turbulence. Since these flows play an important role in saturating the level of t
turbulence, this level, as well as the transport caused by ITG modes, may be overestimated by gyro
simulations, which employ linear collisionless rotation damping. [S0031-9007(97)05109-0]
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Recent advances in gyrofluid simulation of ion
temperature-gradient (ITG) modes in tokamaks ha
shown that the predominant saturation mechanism for
instability is the production of axisymmetric, primarily
poloidal flows [1–3] which vary with radius and serve
to shear stabilize the instability. The damping of suc
poloidal flows is, thus, critically important in determining
the turbulence level to be expected. Less damping w
result in smaller thermal transport rates. The adequa
of gyrofluid models for calculating the damping is a
important issue, especially in view of “first principles”
claims that such ITG turbulence would severely limit con
finement in reactor-sized tokamaks [4,5]. In this Lette
we solve kinetically for the linear collisionless dampin
of poloidal flows, treating the ITG turbulence drive as
known source, and also as an initial value problem.

Our result, in contrast to gyrofluid predictions, i
that these flows, even if driven by a rapidly fluctuatin
source, are not damped by collisionless processes (Lan
damping). The gyrofluid equations were derived fro
the gyrokinetic equation by taking moments and closin
the moment hierarchy by approximations which mod
kinetic effects. These include linear damping terms whi
are correct for the nonaxisymmetric ITG modes, but a
incorrect for the axisymmetric poloidal flows.

We use the gyrokinetic description of the plasma [6
to determine its response to a source. The distrib
tion functions for electrons and ions are given byf 
F0 1 df, whereF0 is the equilibrium, which we choose
to be Maxwellian at temperatureT, and which is as-
sumed to vary slowly perpendicular to a magnetic su
face. The perturbed part of the distribution function
written as df  2sefyTdF0 1 g, where f is the po-
tential and, to lowest order in the gyrokinetic expansio
g  gs $R, ´, m, td. The guiding center position is$R ;
$x 2 $r, where $r  b̂ 3 $yyV is the gyroradius, andV 
eBysmcd is the gyrofrequency. The independent veloci
variables used are the energy´  y2y2 and the magnetic
momentm  y

2
'ys2Bd. The rapid spatial variation per-

pendicular to the magnetic field is assumed to be co
tained in an eikonal function:fs$xd  fk expfiSs$x'dg,
and similarly for gs $Rd. The wave vector is defined
by $k'  =S.
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We consider only an axisymmetric source (i.e.,n  0),
since the response to nonaxisymmetric sources wo
clearly be Landau damped. Then the eikonal is a functi
of c only: S  Sscd, where c is the poloidal flux
function. The gyrokinetic equation in this case is

≠gk

≠t
1 ykb̂ ? =gk 1 ivDgk 

e
T

F0J0
≠fk

≠t
1 SkF0 ,

(1)

whereJ0  J0sk'rd is a Bessel function. The drift fre-
quency is defined byvD  $k' ? $yd, where $yd is the
guiding center drift velocity: $yd  2ykb̂ 3 =sykyVd,
where yk  f2s´ 2 mBdg1y2. For axisymmetric pertur-
bations,

vD  s $yd ? =cdS0scd  Kykb̂ ? =sykyBd , (2)

whereK  smcIyedS0scd, with I ; RBf. The potential
is determined by the quasineutrality condition

2
e
Ti

n0fk 1
Z

d3y J0gik 
e
Te

n0fk 1
Z

d3y gek .

(3)

The source causes charge to build up on magnetic surfa
because of finite ion gyroradius and banana orbit width

The sourceSk represents the$E 3 $B nonlinearity in the
gyrokinetic equation [6], which is due to the nonzeron
modes of the ITG turbulence. It does not depend on t
n  0 modes for which we solve. Although some low
n modes may be weakly damped and may have effe
on the highn modes similar to then  0 modes, we have
considered only then  0 modes because they are strictl
undamped.

We consider the long-time evolution of the rotatio
driven by a fixed steady source. Then, with the appr
priate expansion, the zeroth order (in the bounce tim
equation is

ykb̂ ? =g0 1 ivDg0  0 , (4)

whose solution has the formg0  h exps2iKykyBd,
whereb̂ ? =h  0. The first order equation is

ykb̂ ? =g1 1 ivDg1  2
≠g0

≠t
1

e
T

F0J0
≠fk

≠t
1 SkF0 ,

(5)
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which yields the solubility condition determiningh:

≠h
≠t


e
T

F0

µ
eiQJ0

≠fk

≠t

∂
1 seiQSkdF0 , (6)

where Q  KykyB. The bounce average is defined
by A 

H
sdlyykdAy

H
sdlyykd, wheredl  BdlpyBp; for

trapped particles, the integral goes over a closed orb
while for untrapped particles, it goes once around th
poloidal circumference. Thus, for times longer than a fe
bounce times,gk is given to lowest order by

gk  e2iQ

∑
e
T

seiQJ0fkd 1 seiQRkd
∏

F0 , (7)

whereRk 
R

dt Sk . The finite banana width effects are
contained in theeiQ factors. The electron distribution
function is given by settingJ0  1 andQ  0.

Quasineutrality then yields the integral equation forfk:

n0e

µ
1
Ti

1
1

Te

∂
fk 2

e
Ti

Z
d3y F0ie

2iQJ0seiQJ0fkd 2

e
Te

Z
d3y F0efk  sk , (8)

where the source terms are combined in the expression

sk 
Z

d3y F0ie
2iQJ0seiQRikd 2

Z
d3y F0eRek . (9)

Note that, for a time-independent source,sk andfk grow
linearly in time.

The integral equation can be solved with the use of
variational principle. Writing Eq. (8) asL fk  sk and
defining an inner product as the integral over a magne
surfacesu, yd 

H
sdlpyBpduy, the variational expression

can be written as

V 
sfp

k , L fkd
jsfp

k , skdj2
. (10)

Using d3y  2pd´Bdmyjykj, the numerator can be
written as

sfp
k , L fkd  e

X
j

1
Tj

Z
2p d´ dm F0j

3

∑I dl
yk

jfkj
2 2

j
H

sdlyykdeiQJ0fkj
2H

sdlyykd

∏
.

(11)

It is straightforward to show thatV is minimized for
the exact solution of the integral equation, and th
the minimum value isV  1ysfp

k , skd  1ysfp
k , L fkd.

Equation (11) can be shown to be positive definite, usin
the Schwartz inequality and1 2 J2

0 > 0. Because a
positive minimum ofV exists, it follows that a nontrivial
solution of the integral equation exists. Therefore, th
linear potential response to the axisymmetric part of th
source increases with time without saturating, i.e., it
not damped by collisionless processes, but only by mu
weaker collisional effects, not included here.

In deriving this result, we have assumed that the tim
scales of interest are much longer than a bounce tim
it,
e
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for a thermal ion. We will later justify this assumption:
See Eqs. (16)–(18). Although resonances and collisio
less damping do occur on a shorter time scale, the axisy
metric potentials survive for longer times, being modifie
only by plasma polarization. It is true that there is a clas
of very low energy particles with small bounce frequen
cies, which could provide a resonance, but these are f
in number and their effect is neglected. Including theg1

correction from Eq. (5) would give only a small correc
tion to our results.

In order to obtain more specific results, we must b
more specific about the source. We assume that t
electrons are adiabatic and do not contribute to the sou
because they cannot move across magnetic surfac
The ion sourceSik must be of orderk2

'r2 for small
gyroradius. We expand in powers of the ion gyroradiu
and the ion banana width, usingeiQJ0 . 1 1 iKykyB 2

sKykyBd2y2 2 sk'rd2y4. To lowest order, we have

sfp
k , L0fkd  e

X
j

1
Tj

I dlp

Bp

Z
d3y F0jjfk 2 fkj

2

 0 , (12)

which implies thatfk must be uniform on a magnetic
surface: b̂ ? =fk  0. Its value is determined by the
next order equation:sfp

k , L1fkd  sfp
k , skd, or

e
Ti

fk 
1
D

I dlp

Bp

Z
d3y F0i

3 hReven 1 iKfykyB 2 sykyBdgRoddj , (13)

where we have written the source in terms of even an
odd parts (inyk):

R
dt Sik  Reven 1 Rodd. Here,

D 
I dlp

Bp

Z
d3y

3 F0ihK2fsykyBd2 2 sykyBd2g 1 sk2
'r2dy2j

(14)

represents the shielding effects of a collisionless neocla
sical polarization current, as well as the classical polariz
tion current.

As a specific example, we consider a source which
independent of poloidal angle, i.e., them  0 part; taking
Sik to be independent of velocity, and using large aspe
ratio circular geometry, these integrals can be express
as elliptic integrals and evaluated explicitly [7], with the
result

efk

Ti
 s1 1 1.6q2ye1y2d21

Z
dt Sikysk2

'a2
i d , (15)

wherea2
i  sTiymidyV

2
i , e  ryR is the inverse aspect

ratio, andq  eByBp is the tokamak safety factor. For
smalle andq . 1, the shielding is dominated by the neo
classical polarization. We have assumed that the plas
is deep in the banana regime, so that the ion-ion collisio
frequency is small enough that collisional corrections t
the neoclassical polarization are not important.
725
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Although the source may be rapidly varying in time, th
long time response which we have determined is what
needed to show that the mean square potential increa
with time in a way which is inconsistent with long-term
linear collisionless damping. The linear response to t
source can be written generally as

fkstd 
Z t

0
dt0 Kst 2 t0dSkst0d . (16)

The ensemble average ofjfkj
2 (related to the shear decor-

relation of the ITG turbulence) is

kjfkj
2l 

Z t

0
dt0

Z t

0
dt00 Kpst 2 t0dK st 2 t00d

3 kSp
kst0dSkst00dl . (17)

Assuming the source is random and statistically stationa
kSp

k st0dSkst00dl is a function ofjt0 2 t00j only; we assume
it is nonzero for jt0 2 t00j & tc only, where tc is the
autocorrelation time of the source. We are interested on
in timest ¿ tc, so

kjfkj
2l . 2tckjSkj2l

Z t

0
dt0jK st0dj2

. 2tckjSkj2l jKj2t , (18)
using our resultK  const for times longer than a few
bounce times. The mean square potential fluctuati
increases linearly with time, neglecting collisions an
nonlinear turbulent viscosity. This is inconsistent wit
linear collisionless damping, contained in the gyroflui
models. This may partly explain the discrepancy betwe
the transport predictions of gyrofluid [1] and gyrokinetic
[8] codes, but that is a complicated issue which is still bein
investigated, and we do not attempt a full explanation.

A model equation for the evolution of poloidal rotation
would be

≠

≠t
jfkj

2  AkjSj2 2 Bkjfkj
2

2 Ckjfkj
2jSj2 2 Dknii jfkj

2, (19)
wherejSj2 represents the turbulent nonaxisymmetric fluc
tuations, and the coefficientsAk through Dk depend, in
detail, on the wavelength spectrum and the nature of t
ITG turbulence. We have calculatedAk and shown that
Bk should vanish (although it apparently does not in gy
rofluid models).

A rough criterion for saturating the turbulence is tha
the flow velocity shear determined byjfkj

2 exceeds the
linear growth rate of the modes. This saturation level,
course, determines the thermal diffusivity. Thus, a ke
issue, as yet unresolved, is whether the turbulent viscos
Ck is so strong as to make our linear damping calculatio
irrelevant (and also whether gyrofluid calculations of th
viscosity are correct). Ultimately, this can probably b
decided only by comparisons, now underway, betwe
gyrofluid [9] and gyrokinetic [10,11] codes. If theCk

term is small, as near marginal stability, thenjfkj
2

will be inversely proportional tonii, indicating improved
confinement in larger, hotter tokamaks.
726
e
is
ses

he

ry,

ly

on
d
h
d
en

g

-

he

-

t

of
y
ity
n
e
e
en

For comparison with linear gyrofluid and gyrokinetic
code results, we consider the related problem of t
collisionless relaxation of an initially poloidally rotating
plasma. The solution of this problem can be obtained
using the sourceSik  dfks0ddstd, wheredfks0d is the
initial perturbed distribution function. The delta function
in time is to be interpreted as a function whose width
much larger than a gyroperiod but much smaller than
bounce time. As a simple example, we choose the init
conditions to correspond to ion density and parallel flo
perturbations:

dfks0d 

∑
dnks0d

n0
1

mi

Ti
ykukks0d

∏
Fi0 . (20)

Then, identifying Reven  dnks0dyn0, Rodd  miyk 3

ukks0dyTi, the long time potential is given by Eq. (13)
The initial ion density perturbation is accompanied by
potential perturbation because of quasineutrality and t
classical polarization current:rpols0d 1 ednks0d  0,
where rpols0d  2sn0eyVidk2

'scyBdfks0d. This initial
shielding occurs before the neoclassical polarization
established. We take the initial parallel flow to be o
the form ukks0d  aBs1 1 l cosud, wherea and l are
constants andu is the poloidal angle. The integrals in
Eq. (13) can be carried out with the result

efk

Ti
 s1 1 1.6q2ye1y2d21

3

∑
efks0d

Ti
1 s1.6e3y2 1 0.8led

3

µ
ik'aByVip

k2
'a2

i

∂∏
, (21)

whereVip  eBpysmicd.
The initial E 3 B and parallel velocities combine

to give initial poloidal and toroidal velocities, which
are related byik'fk  supBf 2 ufBpdyc and ukk 
supBp 1 ufBfdyB. The contribution to the perpendicu
lar flow from the pressure gradient perturbation is small
by a factor ofk2

'a2
i than that from the potential pertur-

bation, and is neglected. This flow can be directly com
pared with the fluid flows determined from solving th
gyrofluid equations. Using toroidal momentum conserv
tion uf  ufs0d, and specializing to the casel  0, the
final poloidal velocity can be expressed in terms of th
initial poloidal and toroidal velocities:

up  s1 1 1.6q2ye1y2d21ups0d , (22)

independent ofufs0d. This result has been verified by a
gyrokinetic simulation [10], while attempts to study linea
rotation damping with gyrofluid codes [9] show stron
anomalous linear damping. We further note that, due
the bounce averages occurring in Eq. (13) (the trapp
particle effects), coupling ofm fi 0 sources tom  0
modes is generally stronger than in fluid theories.

In conclusion, we have shown that then  0 poloidal
flows driven by ITG turbulence, although modified b
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plasma polarization, are not linearly damped by collisio
less processes. At least near marginal stability, wh
nonlinear damping of the poloidal flows should be ne
ligible, and in the sufficiently collisionless regimes of in
terest (deep in the banana regime), the level of poloid
rotation should be larger, and the ITG turbulence lev
and transport should be considerably smaller than pred
tions made by gyrofluid simulations which entail linea
collisionless damping. We note that the gyrofluid cod
could be improved by using closures consistent with o
results.

Since recent experimental results on core enhan
confinement seem to be explained by$E 3 $B flow shear
suppression of turbulence [12], our results make enhan
confinement in large tokamaks appear more likely.
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